Gradient Flows of Non Convex Functionals in Hilbert Spaces and Applications

نویسندگان

  • RICCARDA ROSSI
  • GIUSEPPE SAVARÉ
چکیده

This paper addresses the Cauchy problem for the gradient flow equation in a Hilbert space H

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attractors for gradient flows of non convex functionals and applications

This paper addresses the long-time behaviour of gradient flows of non convex functionals in Hilbert spaces. Exploiting the notion of generalized semiflows by J. M. Ball, we provide some sufficient conditions for the existence of a global attractor. The abstract results are applied to various classes of non convex evolution problems. In particular, we discuss the longtime behaviour of solutions ...

متن کامل

Weighted Energy-dissipation Functionals for Gradient Flows

We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke & Ortiz [MO08]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are ...

متن کامل

Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding

Numerical algorithms for a special class of non-smooth and non-convex minimization problems in infinite dimensional Hilbert spaces are considered. The functionals under consideration are the sum of a smooth and non-smooth functional, both possibly non-convex. We propose a generalization of the gradient projection method and analyze its convergence properties. For separable constraints in the se...

متن کامل

A Variational Principle for Gradient Flows of Nonconvex Energies

We present a variational approach to gradient flows of energies of the form E = φ1−φ2 where φ1, φ2 are convex functionals on a Hilbert space. A global parameter-dependent functional over trajectories is proved to admit minimizers. These minimizers converge up to subsequences to gradient-flow trajectories as the parameter tends to zero. These results apply in particular to the case of non λ-conv...

متن کامل

Numerical optimization for the calculus of variations by gradients on non-Hilbert Sobolev spaces using conjugate gradients and normalized differential equations of steepest descent

The purpose of this paper is to illustrate the application of numerical optimizationmethods for nonquadratic functionals defined on non-Hilbert Sobolev spaces. These methods use a gradient defined on a norm-reflexive and hence strictly convex normed linear space. This gradient is defined by Michael Golomb and Richard A. Tapia in [M. Golomb, R.A. Tapia, Themetric gradient in normed linear spaces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006